Los genes mismos que ayudan a posicionar el corazón, cuando se reactivan en la vida adulta pueden inducir cáncer y otras enfermedades como la fibrosis. / Fotolia |
El cuerpo humano muestra una simetría bilateral externa, pero internamente posee muchas asimetrías en la posición de los distintos órganos. El hígado está a la derecha mientras que el bazo o el corazón se sitúan la izquierda, por ejemplo.
Sin embargo, todos los órganos aparecen en la línea media del cuerpo al principio del desarrollo embrionario y, a medida que este avanza, cada uno se coloca en la posición concreta que le corresponde.
Este proceso es fundamental para el empaquetamiento correcto de todos los órganos y para su óptimo funcionamiento. En el caso concreto del corazón, su posición con el polo inferior apuntando a la izquierda es fundamental para que haya una concordancia adecuada con las venas y arterias.
El 50% de las alteraciones detectadas al nacer son malformaciones cardiacas y muchas de ellas tienen que ver con defectos en el posicionamiento del corazón.
Hasta ahora se desconocía el proceso que coloca a los órganos en la
posición adecuada durante el desarrollo embrionario, y en concreto al
corazón. Ahora un trabajo publicado en la revista Nature despeja este último interrogante.
La
investigación está liderada por Ángela Nieto, de la Unidad de
Neurobiología del Desarrollo del Instituto de Neurociencias en Alicante,
un centro mixto del CSIC y la Universidad Miguel Hernández.
“El
corazón aparece inicialmente en la línea media y sabemos que se desplaza
a la izquierda. Hay unas células que, una vez formado el primordio
cardiaco, llegan desde los dos lados del embrión hacia el centro. Pero
llegan muchas más desde el lado derecho que del izquierdo, desplazando
el corazón hacia la izquierda”, explica Nieto.
Hasta ahora, se
pensaba que había una serie de señales en el lado izquierdo del embrión
que se reprimían en el lado derecho para que se produjera la asimetría.
Sin embargo, el equipo de Nieto encontró algo que parecía apuntar a la
existencia de otro mecanismo adicional, preponderante en el lado
derecho.
“Nos encontramos genes que se expresaban más en el lado
derecho. Sabíamos que estos genes eran inductores de movimientos
celulares, por lo que pensamos que podrían existir movimientos
predominantes desde la parte derecha”, añade.
Animación que representa el latido de un corazón humano abierto. / Wikipedia |
El corazón en distintas posiciones
Simplificando,
lo que los investigadores del Instituto de Neurociencias de Alicante
han descubierto es que, una vez formado el primordio del corazón, se
incorporan a él más células desde la derecha del embrión, ejerciendo una
fuerza de empuje de derecha a izquierda, y produciendo su
desplazamiento.
Inicialmente hicieron estas observaciones en
embriones de pollo, que es el modelo clásico. Y después confirmaron el
proceso en pez cebra y en ratón, por lo que se trataba de un mecanismo
conservado en distintas especies y con ello, extrapolable a humanos.
“El
pez cebra es transparente y podíamos estudiar mejor los movimientos
celulares. Comprobamos que al anular la función de estos genes, y con
ello los movimientos de las células hasta el corazón, este permanecía en
el centro en las tres especies”, afirma Óscar Ocaña, primer autor del
estudio.
Así, encontraron el origen de un defecto importante, la
mesocardia, que se produce cuando el corazón no se mueve de su posición
central inicial. Se trata de una anomalía congénita de la posición del
corazón, intermedia entre la situación normal y la dextrocardia (corazón
a la derecha), en la que la ‘punta’ del corazón está dirigida hacia la
derecha.
Eficiencia evolutiva
A lo largo de
la evolución, indica Nieto, el corazón ha ido ganando en eficiencia,
pasando de ser una bomba peristáltica situada en el centro en los
invertebrados, a una bomba de succión en el pez cebra y, finalmente, a
una estructura que late rítmicamente como en los mamíferos, incluida
nuestra especie.
“La mayor eficiencia está favorecida por la morfología del corazón.
Si fuera un tubo recto como al inicio del desarrollo embrionario, no
funcionaría así”, aclara Joan Galcerán, coautor del estudio.
Los
genes inductores de los movimientos celulares que hacen desplazarse al
corazón son viejos conocidos del grupo de la doctora Nieto. Se trata de
los genes Snail y Prrx, implicados en los movimientos celulares que
tienen lugar durante el desarrollo embrionario.
“Las proteínas
productos de estos genes son las que convierten a una célula inmóvil en
móvil. Cuando no funcionan, el embrión no progresa y se muere, porque en
las primeras etapas del desarrollo embrionario hay muchas células que
nacen muy lejos de su posición final y tienen que recorrer distancias
grandes hasta alcanzar su destino”, recuerda Nieto.
Estos genes se
desactivan una vez completado el desarrollo embrionario. Pero en
ocasiones, como también han demostrado estos expertos, pueden
reactivarse en el adulto, dando lugar a procesos patológicos, como la
progresión del cáncer.
“Hay células tumorales que recuperan la
capacidad de moverse, como en las etapas embrionarias, se desprenden del
tumor primario y producen metástasis en órganos distantes. Estos
tumores secundarios, o metástasis, son la causa de más del 90% de las
muertes por cáncer”, concluye Nieto.
Referencia bibliográfica:
Ocaña, O.H., Coskun, H., Minguillón, C., Murawala, P., Tanaka, E.M., Galcerán, J., Muñoz-Chapuli, R. and Nieto, M.A. (2017). A right-handed signalling pathway drives heart looping in vertebrates. Nature In press.
Fuente: Instituto de Neurociencias de Alicante
No hay comentarios:
Publicar un comentario