El Comité de los Premios Nobel ha decidido otorgar el galardón de Fisiología o Medicina de 2019 a William G. Kaelin Jr, Sir Peter J. Ratcliffe y Gregg L. Semenza por sus hallazgos sobre los mecanismos por los que las células perciben y se adaptan a la disponibilidad de oxígeno. Sus trabajos han allanado el camino para nuevas y prometedoras estrategias contra la anemia, el cáncer y muchas otras enfermedades.
William G. Kaelin Jr, Sir Peter J. Ratcliffe y Gregg L. Semenza, premios Nobel de Fisiología en 2019. / © The Nobel Committee for Physiology or Medicine | Mattias Karlén |
Cómo las células pueden adecuarse a los cambios en la reserva de oxígeno. Ese ha sido el hallazgo clave que ha llevado a William G. Kaelin Jr, Sir Peter J. Ratcliffe y Gregg L. Semenza a ganar este año el Premio Nobel de Fisiología o Medicina.
Los tres expertos identificaron la maquinaria molecular que regula la actividad de los genes en respuesta a los diferentes niveles de oxígeno. Su descubrimiento revela el mecanismo de uno de los procesos de adaptación más esenciales de la vida.
Los tres expertos identificaron la maquinaria molecular que regula la actividad de los genes en respuesta a los diferentes niveles de oxígeno
Así, establecieron la base para la comprensión de cómo los niveles de oxígeno afectan al metabolismo celular y la función fisiológica.
Sus trabajos también han allanado el camino para nuevas y prometedoras
estrategias contra la anemia, el cáncer y muchas otras enfermedades.
El oxígeno (O2) constituye aproximadamente una quinta parte de la atmósfera terrestre. Esencial para la vida animal,
es utilizado por las mitocondrias presentes en prácticamente todas las
células animales para convertir los alimentos en energía útil.
Durante
la evolución, se desarrollaron mecanismos para garantizar un suministro
suficiente de oxígeno a los tejidos y las células. El cuerpo carotídeo
–adyacente a los grandes vasos sanguíneos a ambos lados del cuello–
contiene células especializadas que detectan los niveles de oxígeno de
la sangre.
Corneille Heymans, Premio Nobel de Fisiología o
Medicina de 1938, describió cómo la detección de oxígeno en la sangre a
través del cuerpo carotídeo controla nuestra frecuencia respiratoria al
comunicarse directamente con el cerebro.
Además de la rápida
adaptación controlada por el cuerpo carotídeo a los bajos niveles de
oxígeno (hipoxia), existen otras adaptaciones fisiológicas
fundamentales. Una respuesta fisiológica clave a la hipoxia es el
aumento de los niveles de la hormona eritropoyetina (EPO), que conduce a
un aumento de la producción de glóbulos rojos (eritropoyetina).
La
importancia del control hormonal de la eritropoyesis ya se conocía a
principios del siglo XX, pero la forma en que este proceso era
controlado por el O2 seguía siendo un misterio.
La maquinaria de la hipoxia
Ahí entra en escena Gregg Semenza (Nueva York, 1956),
que estudió el gen EPO y cómo está regulado por niveles variables de
oxígeno. Mediante el uso de ratones modificados genéticamente, demostró
que segmentos específicos de ADN localizados junto al gen de la EPO
mediaban la respuesta a la hipoxia.
Mediante ratones modificados genéticamente, Gregg Semenza demostró que segmentos de ADN localizados junto al gen EPO mediaban la respuesta a la hipoxia
Por otro lado, Sir Peter Ratcliffe (Lancashire, Reino Unido, 1954)
también analizó la regulación dependiente del O2 del gen EPO, y ambos
grupos encontraron que el mecanismo de detección de oxígeno estaba
presente en prácticamente todos los tejidos, no solo en las células
renales donde se produce normalmente la hormona.
Estos hallazgos
demostraron que el mecanismo era general y funcional en muchos tipos de
células diferentes. Semenza, que quería identificar los componentes
celulares que mediaban esta respuesta, descubrió en células hepáticas
cultivadas un complejo proteico que se une al segmento de ADN
identificado de una manera dependiente del O2.
Llamó a este complejo el factor inducible a la hipoxia (HIF), y a partir de entonces comenzaron a purificarlo. Así, en 1995 Semenza publicó algunos de sus hallazgos clave, incluyendo la identificación de los genes que codifican el HIF.
Se
encontró que el HIF consiste en dos proteínas diferentes de unión al
ADN, los llamados factores de transcripción: HIF-1α y ARNT. Entonces los
investigadores pudieron comenzar a resolver el rompecabezas,
permitiéndoles entender qué componentes adicionales estaban involucrados
y cómo funciona la maquinaria.
Un socio inesperado
Cuando
los niveles de oxígeno son altos, las células contienen muy poco
HIF-1α. Sin embargo, cuando los niveles de oxígeno son bajos, la
cantidad de HIF-1α aumenta para que pueda unirse y regular así el gen
EPO, así como otros genes con segmentos de ADN que se unen al HIF.
Varios
grupos de investigación demostraron que el HIF-1α, que normalmente se
degrada rápidamente, está protegido contra la degradación en la hipoxia.
A niveles normales de oxígeno, una máquina celular llamada proteasoma
–reconocida por el Nobel de Química 2004 a Aaron Ciechanover, Avram
Hershko e Irwin Rose– degrada el HIF-1α.
William G. Kaelin, Jr. describió cómo la enfermedad de von Hippel-Lindau estaba involucrada en el control de las respuestas a la hipoxia
En tales condiciones, se añade un pequeño péptido (ubiquitina) a la
proteína HIF-1α. La ubiquitina funciona como una etiqueta para las
proteínas destinadas a la degradación en el proteasoma, pero no se sabía
la forma en que se unía de forma dependiente del oxígeno.
La respuesta vino de la mano de William G. Kaelin, Jr. (Nueva York, 1957),
experto en cáncer. Casi al mismo tiempo que Semenza y Ratcliffe estaban
estudiando la regulación del gen EPO, Kaelin estaba investigando un
síndrome hereditario, la enfermedad de von Hippel-Lindau (VHL).
Esta
patología genética conlleva un mayor riesgo de ciertos cánceres en
familias con mutaciones hereditarias de VHL. De esta forma, Kaelin
mostró que el gen VHL codifica una proteína que previene la aparición de
los tumores.
El investigador también mostró que las células
cancerosas que carecen de un gen funcional del VHL expresan niveles
anormalmente altos de genes regulados por la hipoxia; pero que cuando el
gen del VHL era reintroducido en dichas células, los niveles normales
se restauraban.
Este fue un indicio importante de que la
enfermedad de von Hippel-Lindau estaba involucrada de alguna manera en
el control de las respuestas a la hipoxia. Hallazgo que fue confirmado
por el grupo de Ratcliffe, que vinculó de manera concluyente la VHL con
el HIF-1α.
Aunque los expertos habían logrado grandes avances,
todavía faltaba entender cómo los niveles de O2 regulan la interacción
entre la VHL y el HIF-1α La búsqueda se centró en una porción específica
de la proteína HIF-1α, y tanto Kaelin como Ratcliffe sospecharon que la
clave para la detección de O2 residía en algún lugar de este complejo
proteico.
La importancia de sus descubrimientos
Gracias
al trabajo pionero de estos Premios Nobel, ahora conocemos mucho más
sobre cómo los diferentes niveles de oxígeno regulan los procesos
fisiológicos fundamentales. Así, la detección de oxígeno permite a las células adaptar su metabolismo a niveles bajos, como en nuestros músculos durante el ejercicio intenso.
La detección de oxígeno también es esencial durante el desarrollo fetal para controlar la formación normal de vasos sanguíneos y de la placenta
Otros casos de procesos adaptativos controlados por la detección de
oxígeno incluyen la generación de nuevos vasos sanguíneos y la
producción de glóbulos rojos. Nuestro sistema inmunitario y otros
parámetros fisiológicos también están ajustados por la maquinaria de
detección de O2.
Incluso se ha demostrado que la detección de
oxígeno es esencial durante el desarrollo fetal para controlar la
formación normal de vasos sanguíneos y de la placenta.
La
detección de oxígeno es fundamental para un gran número de enfermedades,
como el cáncer. En los tumores, la maquinaria regulada por el oxígeno
se utiliza para estimular la formación de vasos sanguíneos y remodelar
el metabolismo para la proliferación de células cancerosas.
Por
todo ello, muchos investigadores se centran ahora en el desarrollo de
fármacos que pueden interferir con los diferentes estados de la
enfermedad, ya sea activando o bloqueando la maquinaria de detección de
oxígeno.
Fuente: Nobel Prize
No hay comentarios:
Publicar un comentario