Una
investigación internacional en la que ha participado el Consejo
Superior de Investigaciones Científicas (CSIC) ha completado la
secuenciación del genoma del tomate (Solanum lycopersicum) y la de su pariente silvestre (S. pimpinellifolium). El trabajo, en el que han trabajado más de 300 científicos de 13 países, aparece hoy en la portada de la revista Nature.
El
análisis del contenido genético del tomate indica que este sufrió varias
triplicaciones consecutivas hace unos 60 millones de años. Según el
investigador del Instituto de Biología Molecular y Celular de Plantas
Primo Yúfera (centro mixto del CSIC y la Universidad Politécnica de
Valencia) Antonio Granell, que ha dirigido la parte española del
trabajo, “este hecho fue el que podría haber salvado al tomate de la
última gran extinción masiva” que acabó con el 75% de las especies del
planeta, entre las que se incluyen los dinosaurios.
El
ADN del tomate posee unos 35.000 genes que se expresan a lo largo de
unos 900 millones de pares de bases. Entre sus diferentes cadenas de
adenina, guanina, citosina y timina, el tomate presenta indicios de
haber sufrido varias duplicaciones.
Según
Granell, las duplicaciones del genoma “son un mecanismo para generar
nuevas características”. El investigador del CSIC explica: “Si a partir
de una tijera quieres crear una sierra, puedes alterar la tijera para
que se parezca a una sierra, pero te quedarás sin la tijera; para evitar
esta pérdida, lo que la naturaleza hace es duplicar la tijera y aplicar
los cambios en una de las copias de forma que no pierdas la estructura
original en caso de que dicho cambio no beneficie a la especie”.
Con
el paso del tiempo, el contenido genético repetido y el que se ha
quedado obsoleto a causa de las nuevas funciones se remodela poco a
poco. En el caso del tomate, por ejemplo, algunos genes relacionados con
su textura y su color son producto de este proceso de duplicación y
especialización.
Pariente silvestre próximo
El origen del tomate comercial se remonta a unas pequeñas bayas que sólo crecían en algunas regiones de América del Sur. S. pimpinellifolium
es el pariente vivo más cercano a este ancestro común. La secuenciación
de esta especie ha revelado que solo existe una divergencia del 0,6%
entre ambos genomas, lo que quiere decir que solo hay seis cambios por
cada 1.000 nucleótidos, lo que indicaría que ambas especies se separaron
hace 1,3 millones de años, aproximadamente.
El
hallazgo de estas diferencias, junto al mayor nivel de detalle en la
genética del tomate común, permitirá mejorar su producción y cultivo.
Granell considera el tomate como “un cultivo estratégico para nuestro
país, por lo que la secuencia de su genoma podrá ser utilizada por la
comunidad científica para entender su formación y maduración, así como
para mejorar la calidad del fruto y su respuesta y adaptación frente al
estrés biótico y abiótico.”
El análisis en profundidad del genoma del tomate se recoge hoy en Nature;
no obstante, versiones previas de la secuencia han estado disponibles
desde hace más de un año en una página web de acceso público
(http://solgenomics.net). El investigador del CSIC destaca la
importancia de “difundir este tipo de avances lo antes posible, sobre
todo cuando se trata de investigaciones públicas, de forma que se puedan
devolver los beneficios a la sociedad cuanto antes”.
Dentro
de este consorcio internacional de investigadores, la participación
española se centró en la secuenciación del cromosoma 9 y en la
introducción de nuevas tecnologías de secuenciación. El equipo de
Granell también ha contado con la colaboración de investigadores del
Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora
(centro mixto del CSIC y la Universidad de Málaga), el Centro Nacional
de Análisis Genómico y las empresas Genome Bioinformatics y Sistemas
Genómicos. Todo ello ha sido posible gracias a la ayuda del VII Programa
Marco, la Fundación Genoma España, Cajamar, la Federación Española de
Productores Exportadores de Frutas y Hortalizas, la Fundación Séneca, la
Fundación Manrique de Lara, el Instituto Nacional de Bioinformática, el
Instituto Canario de Investigaciones Agrarias y el Instituto de
Investigación Agraria y Pesquera.
- Shusei Sato et al. The tomato genome sequence provides insights into fleshy fruit evolution. Nature. DOI: 10.1038/nature1119
Nota de prensa (pdf 114k) [Descargar]
Fuente:
http://www.csic.es
http://www.csic.es
No hay comentarios:
Publicar un comentario